

kHz SLR Station Graz

Georg Kirchner, Franz Koidl, Daniel Kucharski

Institute for Space Research

SLR Station Graz / Austria

Poznan, Oct. 2008

General Idea: How it works

- Herstmonceux published this idea in Canberra 2006; for 10 Hz SLR
- Graz now implemented a kHz LIDAR into the Graz kHz SLR station:
 - Laser Pulses are transmitted with 2 kHz;
 - Along each path, photons are backscattered (by clouds, layers)
 - Photons are detected with a SPCM (Single Photon Counting Module)
 - Epochs of these photons are filled into 100-ns-slots (15 m distance)
 - For each shot, up to 4096 slots are filled with photon events (> 60 km)
 - Up to 65000 shots can be accumulated / averaged for each slot
 - Number of events in each slot, Epoch Time, Az/El of mount are stored

Graz kHz SLR LIDAR

- PC stores all counter values, Time, Az, El ...

No Clouds: No reflections ..

If there are NO clouds or other reflecting things along the laser beam path: => No reflections detected

The kHz LIDAR easily detects clouds ...

The SPCM / FPGA can "see" these reflections: Here in a distance of 7890 m: In this 15-m slot, 335 out of 400 shots detected the cloud in full daylight

kHz LIDAR: Real Time Display

kHz LIDAR example:

- Full daylight;
- Low Noise, Clear signal
- Cloud in 3117 m dist.;
- 500 Shots averaged;
- @ 2 kHz: 4 meas./s
- Az/El/Time/Dist. Record

Lidar scan of some cloudy area ...

Main LIDAR Goals:

Collecting data for atmospheric research in the Graz basin:

- kHz SLR LIDAR will run automatically day and night during SLR;
- It will run in parallel to all SLR activities;
- This will collect data sets (3-D-coordinates, 15 m resolution) of:
 - Clouds, Layers, Inversions, Cirrus clouds etc.
 - Aircraft Vapor Trails; possibly wind speeds in altitudes
 - Correlation between SLR Return Rate and atmospheric backscatter
 - **????**
- In addition, dedicated scans can be initiated to:
 - map dimensions and growing of Cumulo-Nimbus clouds
 - Measure altitudes of clouds, top levels of CBs etc. etc.

Conclusions

- kHz SLR is also a nice and efficient LIDAR system ©
- Runs in parallel and automatically with SLR
- Day & Night operation
- Simple and low-cost add-on to collect atmospheric data
- Maybe useful also for 10 Hz stations ...

"Do not look into the laser beam with your remaining eye!"

Thank you ©

Slowly scanning through such a sky ...

... results in these records

